Clustering and Modeling of Network level Traffic States based on Locality Preservative Non-negative Matrix Factorization

نویسندگان

  • Yufei Han
  • Fabien Moutarde
چکیده

In this paper, we propose to cluster and model network-level traffic states based on a geometrical weighted similarity measure of network-level traffic states and locality preservative non-negative matrix factorization. The geometrical weighted similarity measure makes use of correlation between neighboring roads to describe spatial configurations of global traffic patterns. Based on it, we project original high-dimensional network-level traffic information into a feature space of much less dimensionality through the matrix factorization method. With the obtained low-dimensional representation of global traffic information, we can describe global traffic patterns and the evolution of global traffic states in a flexible way. The experiments prove validity of our method for the case of large-scale traffic network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization

Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to p...

متن کامل

A New Traffic-Mining Approach for Unveiling Typical Global Evolutions of Large-Scale Road Networks

In this paper, we present a new traffic-mining approach for automatic unveiling of typical global evolution of large-scale road networks. Our method uses as input a history of continuous traffic states (typically measured by travel times) of *all* links of the road graph. This historical data concatenated in a link/time matrix is then approximated with a locality-preserving Non-negative Matrix ...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization

In this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011